MATH 504 HOMEWORK 4

Due Friday, October 12.

Problem 1. Let κ be a regular uncountable cardinal.

- (1) Give an example of an unbounded set in κ , that is not closed.
- (2) Let $G: \kappa \to \kappa$ be any function. Show that the set $C = \{ \gamma < \kappa \mid (\forall \alpha < \gamma)(G(\alpha) < \gamma) \}$ is closed.

Problem 2. Suppose that κ is an inaccessible cardinal. Show $L_{\kappa} \models GCH$. (Here you can use the Condensation Lemma as in the argument that $L \models GCH$.)

Problem 3. Let κ be a regular uncountable cardinal.

- (1) Suppose that S is a stationary subset of κ and C is a club in κ . Show that $C \cap S$ is stationary. Give an example of a cardinal κ and two stationary subsets of κ that are disjoint.
- (2) Suppose in addition that κ is inaccessible. Show that $\{\tau < \kappa \mid \tau \text{ is a cardinal }\}$ is club in κ .

Problem 4. Suppose that $\mathcal{F} \subset \mathcal{P}(\kappa)$ is a κ -complete normal ultrafilter on κ . I.e. \mathcal{F} satisfies the following:

- for all $A \subset \kappa$, $A \in \mathcal{F}$ or $\kappa \setminus A \in \mathcal{F}$,
- if $\tau < \kappa$ and $\{A_{\xi} \mid \xi < \tau\}$ are sets in \mathcal{F} , then $\bigcap_{\xi < \tau} A_{\xi} \in \mathcal{F}$.
- for all regressive functions $f : \kappa \to \kappa$ (regressive means that $f(\alpha) < \alpha$ for all α), there is $\gamma < \kappa$ such that $f^{-1}(\gamma) := \{\alpha < \kappa \mid f(\alpha) = \gamma\}$ is in \mathcal{F} .

Show that \mathcal{F} is closed under diagonal intersections of length κ .

Remark: sometimes "normality" is defined as the property of being closed under diagonal intersections.